For certain types of data sets, almost all of the data lies within two or three SDs of the average.
Example (from the book): $\bar{h}=63.5$ inches and $S D_{h} \approx 3$ inches...

Figure 8. The SD and the histogram. Heights of 2,696 women age 18 and over in HANES5. The average of 63.5 inches is marked by a vertical line. The region within one SD of the average is shaded: 72% of the women differed from average by one SD (3 inches) or less.

Example (continued): $\bar{h}=63.5$ inches and $S D_{h} \approx 3$ inches...

Figure 9. The SD and the histogram. Heights of 2,696 women age 18 and over in HANES5. The average of 63.5 inches is marked by a vertical line. The region within two SDs of the average is shaded: 97% of the women differed from average by two SDs (6 inches) or less.

Standard units

${ }^{*}$) We commonly measure the distance of data to their average in terms of the standard deviation of the data set... This leads to the concept of standard units.

If x_{j} comes from a distribution with average \bar{x} and standard deviation $S D_{x}$, we convert x_{j} to its standard units, z_{j}, by setting

$$
z_{j}=\frac{x_{j}-\bar{x}}{S D_{x}}
$$

$\left(^{*}\right)\left|z_{j}\right|$ tells us how far x_{j} is from \bar{x} as a multiple of $S D_{x}$.
$\left(^{*}\right)$ If $z_{j}>0$, then x_{j} is above average; if $z_{j}<0$, then x_{j} is below average.
(*) Standard units are 'pure numbers'. This means that there are no units of measurement (inches, dollars, etc.) associated with standard units.
(*) The standard units value z_{j} of a given datum x_{j} is also called the z-score of x_{j}.

Example. Suppose that the average January temperature in Podunk is $45^{\circ} \mathrm{F}$, with an SD of $2^{\circ} \mathrm{F}$, while in Whoville the average January temperature is $25^{\circ} \mathrm{F}$ with an SD of $5^{\circ} \mathrm{F}$. On January 20th, the temperature in Whoville was $16^{\circ} \mathrm{F}$ and in Podunk it was $38^{\circ} \mathrm{F}$.

Where was the temperature more unusual that day?
We can answer this by converting the temperatures on January 20th in both towns to standard units:

$$
z_{p}=\frac{38-45}{2}=-3.5 \quad \text { and } \quad z_{w}=\frac{16-25}{5}=-1.8 .
$$

(*) Both temperatures were below average.
${ }^{(*)}$ The z-score for Podunk is more negative than the z-score for Whoville, so from a statistical point of view the temperature in Podunk was more unusual that day.
(*) The larger $\left|z_{j}\right|$, the more unusual x_{j} is.

Observation. Converting any set of data, $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with average \bar{x} and standard deviation $S D_{x}=s$, to standard units produces a set of numbers $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ with average $\bar{z}=0$ and standard deviation $S D_{z}=1$.

Because arithmetic...

$$
\begin{aligned}
\bar{z} & =\frac{z_{1}+z_{2}+\cdots+z_{n}}{n} \\
& =\frac{\frac{x_{1}-\bar{x}}{s}+\frac{x_{2}-\bar{x}}{s}+\cdots+\frac{x_{n}-\bar{x}}{s}}{n} \\
& =\frac{\frac{x_{1}-\bar{x}}{n}+\frac{x_{2}-\bar{x}}{n}+\cdots+\frac{x_{n}-\bar{x}}{n}}{s} \\
& =\frac{\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}-\frac{\overbrace{\bar{x}+\bar{x} \cdots+\bar{x}}^{n}}{n}}{s} \\
& =\frac{\bar{x}-\bar{x}}{s}=0
\end{aligned}
$$

and more arithmetic

$$
\begin{aligned}
S D_{z} & =\sqrt{\frac{z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}}{n}} \\
& =\sqrt{\frac{\left(\frac{x_{1}-\bar{x}}{s}\right)^{2}+\left(\frac{x_{2}-\bar{x}}{s}\right)^{2}+\cdots+\left(\frac{x_{n}-\bar{x}}{s}\right)^{2}}{n}} \\
& =\sqrt{\frac{\frac{\left(x_{1}-\bar{x}\right)^{2}}{s^{2}}+\frac{\left(x_{2}-\bar{x}\right)^{2}}{s^{2}}+\cdots+\frac{\left(x_{n}-\bar{x}\right)^{2}}{s^{2}}}{n}} \\
& =\sqrt{\frac{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n}}{s^{2}}} \\
& =\frac{\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n}}}{\sqrt{s^{2}}} \\
& =\frac{s}{s}=1
\end{aligned}
$$

The normal approximation, I

- Different sets of data may be seen to have very similar distributions, once they have been converted to standard units.
- Converting to standard units moves the center of the histogram (the average of the data) to 0 , and scales the data as a whole so that one SD is converted to 1 unit.
- In many cases, the histogram of the data in standard units takes on a somewhat bell-shaped form - the form of the normal curve.
- The normal curve is the graph of the function

$$
y=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

(where $e=2.7182818 \ldots$. .

The normal curve is symmetric around the line $z=0$, and the total area under the curve is equal to 1 (or 100%, if you prefer).

Example: The distribution of heights of women age 18 and over in HANES5 (Health and Nutrition Examination Study, '03 - '04) appears in the histogram below (from page 81 in chapter 5 of FPP).

Statistics, Fourth Edition
Copyright © 2007 W. W. Norton \& Co., Inc.
The average height is 63.5 and the SD is about 3 . The shaded region represents the heights that fall within one SD of average.

To see how well the distribution of the height data is approximated by the normal curve, we must convert the data to standard units and sketch the histogram for the 'standardized' (or normalized) data.

To save a lot of drawing time, we observe that the conversion to standard units is just a rescaling. This means that instead of actually converting all of the heights to their standard units and then drawing a new histogram, we can simply change the horizontal and vertical scales on the original histogram.

- If the (rescaled) histogram is similar to the normal curve, then area of regions under the histogram will be approximately equal to areas under the normal curve for the same range of standard units.
- I.e., the percentage of the data that lies within 1 SD of the average will be approximately equal to the area under the normal curve between -1 and 1 ; the percentage of the data lying within 2 SDs of the average will be approximately equal to the area under the normal curve between -2 and 2 ; and so forth.
- This is useful, because the distribution of the area under the normal curve is well-understood.

In particular...

'Rule of thumb':
If a set of data has an approximately normal distribution, then:

- About 68% of the data lies within one $S D$ of average;
- About 95% of the data lies within two SDs of average;
- About 99% of the data lies within three SDs of average;

Remember: This rule only applies to data that is (approximately) normally distributed! Absent that condition (or another assumption about how the data is distributed) we rely on weaker estimates, like those given by Chebyshev's inequality.

To calculate areas under the normal curve for regions other than those above (-1 to $1,-2$ to 2 and -3 to 3), we use a normal table, like the one found in the back of the textbook.

A normal table

A NORMAL TABLE

z	Height	Area	z	Height	Area	z	Height	Area
0.00	39.89	0	1.50	12.95	86.64	3.00	0.443	99.730
0.05	39.84	3.99	1.55	12.00	87.89	3.05	0.381	99.771
0.10	39.69	7.97	1.60	11.09	89.04	3.10	0.327	99.806
0.15	39.45	11.92	1.65	10.23	90.11	3.15	0.279	99.837
0.20	39.10	15.85	1.70	9.40	91.09	3.20	0.238	99.863
0.25	38.67	19.74	1.75	8.63	91.99	3.25	0.203	99.885
0.30	38.14	23.58	1.80	7.90	92.81	3.30	0.172	99.903
0.35	37.52	27.37	1.85	7.21	93.57	3.35	0.146	99.919
0.40	36.83	31.08	1.90	6.56	94.26	3.40	0.123	99.933
0.45	36.05	34.73	1.95	5.96	94.88	3.45	0.104	99.944

0.50	35.21	38.29	2.00	5.40	95.45	3.50	0.087	99.953
0.55	34.29	41.77	2.05	4.88	95.96	3.55	0.073	99.961
0.60	33.32	45.15	2.10	4.40	96.43	3.60	0.061	99.968
0.65	32.30	48.43	2.15	3.96	96.84	3.65	0.051	99.974
0.70	31.23	51.61	2.20	3.55	97.22	3.70	0.042	99.978
0.75	30.11	54.67	2.25	3.17	97.56	3.75	0.035	99.982
0.80	28.97	57.63	2.30	2.83	97.86	3.80	0.029	99.986
0.85	27.80	60.47	2.35	2.52	98.12	3.85	0.024	99.988
0.90	26.61	63.19	2.40	2.24	98.36	3.90	0.020	99.990
0.95	25.41	65.79	2.45	1.98	98.57	3.95	0.016	99.992
1.00	24.20	68.27	2.50	1.75	98.76	4.00	0.013	99.9937
1.05	22.99	70.63	2.55	1.54	98.92	4.05	0.011	99.9949
1.10	21.79	72.87	2.60	1.36	99.07	4.10	0.009	99.9959
1.15	20.59	74.99	2.65	1.19	99.20	4.15	0.007	99.9967
1.20	19.42	76.99	2.70	1.04	99.31	4.20	0.006	99.9973
1.25	18.26	78.87	2.75	0.91	99.40	4.25	0.005	99.9979
1.30	17.14	80.64	2.80	0.79	99.49	4.30	0.004	99.9983
1.35	16.04	82.30	2.85	9.69	99.56	4.35	0.003	99.9986
1.40	14.97	83.85	2.90	0.60	99.63	4.40	0.002	99.9989
1.45	13.94	85.29	2.95	0.51	99.68	4.45	0.002	99.9991

Using the normal table

(i) The table in the appendix gives the areas for symmetric regions $-z_{0} \leq z \leq z_{0}$ (as percentages), where $0 \leq z_{0} \leq 4.45$. If $z_{0} \geq 4.50$, you can assume that the corresponding area is 99.9999%.

Example: Suppose that the heights of men aged $25-35$ in a certain city are distributed (approximately) normally with an average of 67 inches and a standard deviation of 2.5 inches.

What percentage of these men are between 65 and 69 inches tall?
a. A height of 65 inches corresponds to $\frac{65-67}{2.5}=-0.8$ standard units, and 69 inches corresponds to $\frac{69-67}{2.5}=0.8$ standard units.
b. The percentage we want is (approximately) equal to the area under the normal curve between -0.8 and 0.8 which is equal to the table entry for $z_{0}=0.8$, which is 57.63%.
(ii) The normal curve is symmetric around $z=\mathbf{0}$ so the area under the curve between 0 and z_{0} is equal to the area under the curve between $-z_{0}$ and 0 , and both are equal to exactly one half the table entry for z_{0}.

Example. What percentage of the men in the previous example are between 67 and 70 inches tall?
a. 67 inches is average which corresponds to 0 standard units and 70 inches corresponds to $\frac{70-67}{2.5}=1.2$ standard units.
b. The percentage we want is (approximately) equal to the area under the normal curve between 0 and 1.2 which is equal to half the table entry for $z_{0}=1.2$. This is $76.99 / 2 \% \approx 38.5 \%$.
(iii) If $z_{0}>0$, then the area under the normal curve to the left of z_{0} is equal to 50% plus half the table entry for z_{0}, because...

Example. What percentage of the men in the previous examples are less than six feet, two inches tall?
Six feet, two inches is 74 inches which corresponds to $\frac{74-67}{2.5}=2.8$ standard units. The table entry for 2.8 is 99.49%, so the percentage of men who are under 74 inches tall is $50 \%+\frac{99.49 \%}{2} \approx 99.75 \%$.
(iv) If $z_{0}>0$, then then area under the normal curve to the right of z_{0} is equal to 50% - half the table entry for z_{0}, because

Example. What percentage of the men are taller than 68 inches?
68 inches corresponds to $\frac{68-67}{2.5}=0.4$, so the percentage of men who are more than 68 inches tall is (approximately) $50 \%-\frac{31.08 \%}{2}=34.46 \%$.
(*) The areas of other types of regions under the normal curve can be calculated from the table by using (i) - (iv) and the symmetry of the normal curve around 0 . For example, if $0<z_{0}<z_{1}$, then the area under the normal curve between z_{0} and z_{1} is

$$
=\frac{1}{2} \operatorname{Table}\left(z_{1}\right)-\frac{1}{2} \operatorname{Table}\left(z_{0}\right)
$$

because

