
Lecture Notes – Friday, 2/24/17– Estimating Sample Percentages

1 From number ...

When drawing at random with replacement from a zero-one box |
M︷ ︸︸ ︷

1 . . . 1

N︷ ︸︸ ︷
0 . . . 0 |:

1. The expected number of 1 s in the sample is E(#) = np, where

• n is the number of draws and

• p = M/(M + N) is the proportion of 1 s in the box (so the percentage of 1 s in the box is p× 100%).

2. The standard error for the number of 1 s in the sample is

SE(#) =
√
n× SD(box) =

√
n×

√
p(1− p).

2 ... To percentage

The observed percentage of 1 s is the observed number of 1 s in the sample, divided by the number of draws,
multiplied by 100%. I.e.,

observed percentage of 1 s =
observed number of 1 s

n
× 100%.

So...

1. The expected percentage of 1 s in the sample is

E(%) =
E(#)

n
× 100% =

np

n
× 100% = p× 100% (= percentage of 1 s in the box.)

2. The standard error for the percentage of 1 s in the sample is

SE(%) =
SE(#)

n
× 100% =

√
n×

√
p(1− p)

n
× 100% =

√
p(1− p)√

n
× 100%

Comments:

(a) The normal approximation (central limit theorem) extends to this case as well. I.e., if the number of draws is
large enough, then the probability histogram for the observed percentage of 1 s (scaled to standard units) is
well-approximated by the normal curve.

(b) If 0 < p < 1, then
√

p(1− p) ≤ 1/2.† This means that the standard error for percentage is always less than
1/2√
n
× 100% =

50%√
n

. Always, no matter what the distribution of 1 s and 0 s in the box.

3 Examples

Example 1. Suppose that n = 1600 marbles are drawn at random with replacement from a jar containing 36 red
marbles and 64 blue marbles. What is the chance that the percentage of red marbles in the sample is between 34%
and 38%?

• This is like drawing 1600 tickets (at random with replacement) from a box with 36 1 s (red marbles) and 64
0 s (blue marbles).

• Parameters: p = 0.36 and n = 1600.

• Expected percentage of red marbles: E(%) = 36% = percentage of red marbles in the jar.

†To understand why, find the vertex of the parabola whose equation is y = x(1 − x).
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• Standard error for the percentage of red marbles: SE(%) =
SE(#)

1600
× 100% =

√
0.36× 0.64√

1600
× 100% = 1.2%.

• Normal approximation:

P (34% ≤ observed % of red marbles ≤ 38%) ≈ area under normal curve between
34%− 36%

1.2%
and

38%− 36%

1.2%

= area under normal curve between − 1.67 and 1.67

≈ 90.3%

⇒ The probability 90.3% comes from the normal table.

Example 2. When a fair coin is tossed n times, the law of averages tells us that the probability that we will observe
about 50% heads approaches 100% as the number of tosses n increases. This claim can be justified by the normal
approximation, as follows.‡

• Tossing a fair coin is like drawing from the box 1 0 at random with replacement: heads ⇔ 1 .

• The expected percentage of heads is E(%) = 50%

• The standard error for the percentage of heads in n tosses is

SE(%) =
SE(#)

n
× 100% =

√
1/2× 1/2√

n
× 100% =

100%

2
√
n

=
50%√

n
.

• ‘About 50% heads’ means that the difference between the observed percentage of heads and 50% is small. How
small? As small as we want, if we are willing to toss the coin many times.

• Let’s look at a specific example: the law of averages says that the probability

P (49.99% < observed percentage of heads in n tosses < 50.01%)

approaches 100% as the number of tosses n grows larger.

• We can use the normal approximation to estimate this probability and see how it depends on n:

P (49.95% < obs. % of H in n tosses < 50.05%) ≈ AUNC between
49.95%− 50%

SE(%)
and

50.05%− 50%

SE(%)

= AUNC between
−0.05%

50%/
√
n

and
0.05%

50%/
√
n

= AUNC between − 0.05
√
n

50
and

0.05
√
n

50

= AUNC between −
√
n

1000
and

√
n

1000

(AUNC means ‘area under the normal curve).

• Now, as n grows large so does
√
n/1000. For example, if n = 9, 000, 000, then

√
n = 3000, so

√
n/1000 = 3 and

we can conclude that...

if we toss a fair coin 9, 000, 000 times, the probability that the percentage of heads will be between 49.95% and
50.05% is about equal to the area under the normal curve between −3 and 3. I.e., the chance is about 99.73%
that the percentage of heads in 9, 000, 000 tosses is within 0.05% of 50%.

Comments:

(i) You can repeat this argument with any margin of error (0.05% above). The smaller the margin of error, the
larger n will have to be.

(ii) You can also repeat this argument for a box of 1 s and 0 s where the proportion of 1 s is something other
than 0.5.

‡You can skip this explanation if you want. It is a little technical, but not too bad. You should certainly give it a go if you are a math
or science major.
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4 Drawing without replacement

In practice — political polling for example — the ‘draws from a box’ are usually done without replacement. Though
ideally, the ‘tickets’ are still drawn randomly.

Definition. A sample of n tickets drawn from a box without replacement is called a simple random sample if it
is drawn in such a way that every possible set of n tickets in the box is just as likely to be drawn as any other.

Also, in practice, drawing a simple random sample is often difficult (e.g., prohibitively time-consuming and
expensive) if not impossible. The math is more complicated for the types of sampling that is often used in practice
(e.g., ‘probability sampling’ — see the end of Chapter 19 in the textbook), so we will focus on the case of simple
random samples.§ Technical details aside, the basic ideas are the same.

One more observation before returning to the math. When drawing without replacement, the sample size n
cannot be bigger than the population size (the number of hypothetical tickets in the hypothetical box). Moreover
as the sample size grows larger, it becomes more likely that the distribution of tickets in the sample will mirror
the distribution of tickets in the box. For example, if we draw all the tickets in the box, the sample is the box so
the distributions are identical. This is reflected in the fact that the standard errors for simple random samples are
smaller than the standard errors for random samples with replacement (with the same sample size).

Math-Facts:
Suppose that a simple random sample of n tickets is drawn from a box of N tickets containing pN 1 s and (1− p)N
0 s . Here p is the proportion of 1 s in the box, so p× 100% is the percentage of 1 s in the box (0 < p < 1) and of

course n ≤ N .

• The expected percentage of 1 s in the sample is the same as the percentage of 1 s in the box. I.e.,

E(%) = p× 100%.

This is the same as when drawing at random with replacement.

⇒ The ‘expected percentage’ is the average of the ‘box of percentages’. Imagine drawing every possible sample
of n tickets from the original box (without replacement); for each such sample find the percentage of 1 s in
that sample; and write each possible sample percentage on a ticket; and put these tickets in a new box. This
is the ‘box of percentages’.

• The standard error for the percentage of 1 s in the sample is

SE(%) =

√
N − n

N − 1
×

SE(%) for drawing with replacement︷ ︸︸ ︷√
p(1− p)√

n
× 100% .

In other words, the standard error for percentage when drawing without replacement is equal to the standard
error for percentage when drawing with replacement, multiplied by the correction factor

CF =

√
N − n

N − 1

Two things are worth noting about the correction factor:

(i) As the sample size n grows, the numerator of the correction factor shrinks, so the standard error becomes
smaller.

(ii) On the other hand, if the sample size n is much smaller than the population size N (the usual case in
political polling for example), then the correction factor is very close to 1 and can be safely ignored.

E.g., if N = 10, 000, 000 and n = 2500, then

CF =

√
9, 997, 500

9, 999, 999
≈ 0.9999.

• The normal approximation works just as well in the case of simple random samples as in the case of drawing with
replacement as long as the sample size is large enough (but still small compared to the size of the population).

§One of the main differences between using simple random samples and the types of sampling used in the ‘real world’ is that the
standard errors for the real-world sampling methods tend to be bigger than the standard errors for simple random samples.
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5 How big should the sample be?

When choosing a sample size, we try to make the likely size of the chance error as small as possible. The chance
error is the difference between the observed percentage of 1 s in the sample and the expected percentage (the
percentage of 1 s in the hypothetical box).

The standard error provides an estimate for the likely size of the chance error, and as we saw above, the chance
error (for percentage) grows smaller as the sample size grows larger. When drawing without replacement, the
standard error grows smaller a little bit faster (compared to the drawing with replacement) as the sample size grows
because of the correction factor. However, when the size of the population is large this effect of the correction factor
is negligible for most practical purposes until the sample size is at least 1% of the population or more.

This means that when choosing the size of sample from a large population, the size of the population can usually
be ignored. The accuracy of the estimate will depend much more on the sample size than on the relative size of the
sample size.
Example 3. Suppose that simple random samples of 2000 likely California voters (there are about 18, 000, 000) and
2000 likely Vermont voters (there are about 500, 000) are polled, asking whether they support Bernie Sanders for
King of America. The parameter recorded is the percentage of Bernie supporters in both samples, and suppose that
his actual support in both states is 40%.

The standard error for percentage in the California poll will be

SEC(%) =

√
18000000− 2000

18000000− 1
×
√

0.4× 0.6√
2000

× 100% ≈ 1.0953%

and the standard error for percentage in the Vermont poll will be

SEV (%) =

√
500000− 2000

500000− 1
×
√

0.4× 0.6√
2000

× 100% ≈ 1.0954%.
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