
(*) If 4 tickets are drawn with replacement from | 1 2 2 4 6 |, what

are the chances that we observe exactly two 2 s?

⇒ ‘Exactly two’ 2 s in a sequence of four draws can occur in many ways.

For example, ( 2 - not 2 - not 2 - 2 ), ( 2 - 2 - not 2 - not 2 ),

( 2 - not 2 - 2 - not 2 ), and so on.

Two key observations:

(i) All these different sequences are mutually exclusive of each other. This is

because, if we observe the sequence ( 2 - not 2 - 2 - not 2 ), for example,

then we do not observe the sequence ( 2 - not 2 - not 2 - 2 ).

(ii) The probability of observing each of these sequences is the same for all

of them, because
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This means that

P (exactly two 2 s in four draws) =

number of sequences with two 2 s︷ ︸︸ ︷
36

625
+

36

625
+

36

625
+ · · ·+ 36

625

The only thing that remains is to figure out how many sequences there are

with exactly two 2 s...

Observations.

(i) We don’t care which tickets go in the ‘not 2 ’ spots.

(ii) Since we are (theoretically) listing all of the possible 2- 2 sequences, we

don’t need to think about this process as a bunch of ‘random draws’... we

can be methodical.

(iii) When listing different 2- 2 sequences, all we have to decide is where in

each sequence to put the 2 s... the ‘not 2 ’s will go in the other two spots.

⇒ The number of different sequences with two 2 s is equal to the number

of ways to choose two positions in a sequence of four.
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⇒ There are 4 positions in which we can place the first 2 , and for each

choice of first position, there are 3 ways to choose the second position...

So it seems that there are 4 · 3 = 12 ways to place two 2 s in a sequence of

four draws...

But we are overcounting, because each pair of positions has been counted

twice! For example, the choices ‘first 2 in the third position and second 2

in the first position’ and ‘first 2 in the first position and second 2 in the

third position’ result in the same pair of positions — first and third.

Conclusion: The number of sequences with exactly two 2 s is
4 · 3

2
= 6...

So

P (exactly two 2 s in four draws) =

number of sequences with two 2 s︷ ︸︸ ︷
36

625
+

36

625
+
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625
+ · · ·+ 36

625

=

(
36

625

)
× 6 =

216

625
= 34.56%
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More general question: If n tickets are drawn at random with replacement

from the box

| 1 2 2 4 6 |,
what are the chances that exactly k of them will be 2 s?

The reasoning that we used when n = 4 and k = 2 can be used to answer

this question too.

(*) The results of different draws are independent.

(*) The probability of a 2 on any one draw is 2/5.

(*) The probability of a not 2 on any one draw is 3/5.

(*) I will henceforth label ‘not 2 ’ by ? .
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Intermediate conclusion 1.

The probability of any particular sequence of n draws which results in k 2 s

and (n− k) ? s

k 2 s and (n−k) ? s︷ ︸︸ ︷
? ? 2 ? 2 · · · ? 2 ?

is equal to
k 2/5 s and (n−k) 3/5 s︷ ︸︸ ︷
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regardless of the order in which the tickets appear!
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(*) Different sequences of k 2 s and (n− k) ? s (i.e., sequences that differ

in at least one position (actually, at least two)) are mutually exclusive.

(*) We can use the addition rule to conclude that

P (exactly k 2 s in n draws)

=

# of different sequences with exactly k 2 s and (n − k) ? s︷ ︸︸ ︷(
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Next Question: What is the ‘unknown number’ ?

I.e., how many sequences of draws are there with k 2 s and (n− k) ? s?

(*) We only need to count the number of ways of choosing k positions for

the 2 s among the n available positions.

n positions and k 2 s︷ ︸︸ ︷
? ? 2 ? 2 · · · ? 2 ?

• There are n · (n− 1) · (n− 2) · · · (n− k + 1) different ways that we can

place the 2 s if the order matters: first 2 , second 2 , etc.

• But we don’t care about the order in which the positions were chosen,

so the number above is too big — we are counting each of the possible

sequences too many times.

• Every unordered set of k positions of the 2 s appears

k! = k · (k − 1) · · · 2 · 1

different times in the collection of ordered sets we counted above.
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Intermediate conclusion 2.

The number of sequences of n draws that result in k 2 s and (n − k) ? s

is equal to

n · (n− 1) · (n− 2) · · · (n− k + 1)

k!
=

n!

(n− k)! · k!
=

(
n

k

)
.

Final conclusion.

If n tickets are drawn at random with replacement from the box

| 1 2 2 4 6 |,
the probability of observing exactly k 2 s is

P (exactly k 2 s in n draws) =

(
n

k

)
·
(
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.
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Comments:

•
(
n
k

)
is pronounced ‘n choose k’. It is the number of different (unordered)

subsets of size k that can be chosen from a set of n objects.

•
(
n
0

)
= 1 by definition.

•
(
n
k

)
=
(

n
n−k

)
.

• The binomial coefficients large quickly. For example,(
10

3

)
= 120,

(
10

5

)
= 252,

(
20

3

)
= 1140,

(
20

5

)
= 15504

and (
100

30

)
= 29372339821610944823963760

• The numbers
(
n
k

)
are called binomial coefficients because they appear

in the binomial formula

(a + b)n =
(
n
0

)
an +

(
n
1

)
an−1b + · · ·+

(
n
k

)
an−kbk + · · ·+

(
n
n

)
bn.
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The general case.

Suppose a box contains N tickets, some if which are 1 s and that the

probability of (randomly) drawing a 1 from the box is P ( 1 ) = p.

⇒ The number of 1 s in the box is p ·N .

⇒ The probability of drawing a not- 1 is 1− p.

If n tickets are drawn at random with replacement from the box, then the

probability of observing exactly k 1 s is

P (exactly k 1 s in n draws) =

(
n

k

)
pk(1− p)n−k.

Observation. The number N of tickets in the box is less important here

than the proportion p of 1 s in the box.
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Coin tosses.

If we have a box with two tickets, for example one 1 and one 0 , then the

number of 1 s in n random draws with replacement from this box can be

used to model the number of heads in n tosses of a fair coin.

(*) The probability of observing k heads in n tosses of a fair coin is

P (k heads in n tosses) =

(
n

k

)
·
(

1

2

)k

·
(

1

2

)n−k

=

(
n

k

)
·
(

1

2

)n

.

(*) Given a particular n, there are n + 1 possible values for k (i.e.,

0, 1, 2, . . . , n) and the probabilities for the different values of k can be

displayed in a probability histogram.

⇒ The values of k are arranged on the horizontal axis and we use the

density scale on the vertical axis: the area of the bar above each

value k gives the probability of observing exactly k heads in n

tosses.
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Number of H in ten tosses
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Probability histogram for the number of heads in 10 tosses of a fair coin.
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We can ‘read’ this histogram the same way that we do a histogram for data...

(*) What is the probability of observing more than 7 heads in 10 tosses?

⇒ More than 7 heads in 10 tosses means 8 heads, 9 heads or 10 heads,

and these are all mutually exclusive events. So...

P (more than 7 heads in 10 tosses)

= P (8 heads) + P (9 heads) + P (10 heads)

= area under histogram from 7.5 to 10.5

≈ 0.0439 + 0.0098 + 0.00098 ≈ 0.0547

(*) What is the probability of observing between 4 and 6 heads in 10 tosses?

⇒ P (between 4 and 6 heads in 10 tosses)

= P (4 heads) + P (5 heads) + P (6 heads)

= area under histogram from 3.5 to 6.5

≈ 0.2051 + 0.2461 + 0.2051 = 0.6563
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A hint of things to come...
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