1. Four hundred draws are made at random with replacement from a box of numbered tickets containing $8 \boxed{1} \mathrm{~s}$ and 20 s .
(a) (2 pts) What is the expected percentage of 1 s in the sample?

The expected percentage of 1 s is equal to the percentage of 1 s in the box, which is 80%.
(b) (2 pts) What is the standard error (SE) for the percentage of 1 s in the sample?

$$
S E_{\%}=\frac{S D(b o x)}{\sqrt{n}} \times 100 \%=\frac{\sqrt{0.2 \times 0.8}}{\sqrt{400}} \times 100 \%=2 \% .
$$

(c) (2 pts) What is the (approximate) probability that the sample percentage of 1 s is between 78% and 82% ? Why?
According to the normal approximation, the required probability is (approximately) equal to the area under normal curve between $\frac{78 \%-80 \%}{2 \%}=-1$ and $\frac{82 \%-80 \%}{2 \%}=1$. I.e., the probability is about 68%.
2. A market research firm surveyed a simple random sample of 1600 households from a large metropolitan area of more than 100, 000 households.
(a) (4 pts) Of the sample households, 960 owned two or more cars. Use this data to construct a 95%-confidence interval for the percentage of all households in the metropolitan area who own two or more cars, or explain why this is not possible.
The sample percentage of two-car households is $(960 / 1600) \times 100 \%=60 \%$ and (using the sample data to estimate the $S D$ of the population) the standard error for percentage is approximately

$$
S E_{\%} \approx \frac{\sqrt{0.6 \times 0.4}}{\sqrt{1600}} \times 100 \% \approx 1.225 \% .
$$

The 95\%-confidence interval for the percentage of two-car households in the metropolitan area is:

$$
\text { sample } \% \pm 2 S E_{\%}=60 \% \pm 2.45 \% \quad(\text { or }(57.55 \%, 62.45 \%))
$$

(b) (2 pts) The 1600 households in the sample included 2500 children age 6 or younger. Of these 2500 children, 1375 watched at least three hours of TV per day.
True or false, and explain briefly: The percentage of all children age 6 or younger in the metropolitan area who watch at least three hours of TV per day is likely to be 55% give-or-take 1%.
False. The numbers are correct for a simple random sample of children, but the sample described above is not a simple random sample. ${ }^{\dagger}$

[^0]3. The average household income for all the households in the sample in the problem above was $\$ 56,500$ with an SD of $\$ 14,000$.

True or False, and justify your answer briefly:

(a) (2 pts) A 95\%-confidence interval for the average household income in the metropolitan area is about $\$ 56,500 \pm \$ 700$.
True.A 95\%-confidence interval for the average household income in the metropolitan area is given by (sample average) $\pm 2 S E$. The standard error in this case is $S E=$ $14000 / \sqrt{1600}=350$ so $2 S E=700$.
(b) (2 pts) The chance is about 95% that the interval in (a) contains the average household income in the sample.
False. The chance is exactly 100% that the interval $\$ 56,500 \pm \$ 700$ contains the sample average of $\$ 56,500$.
(c) (2 pts) About 95% of the households in the metropolitan area have incomes between $\$ 55,800$ and $\$ 57,200$.
False. This is not what the confidence interval for average income predicts. Moreover the income data for the population is likely to have a similar spread to the sample data which is summarized by the $S D=\$ 14,000$, so the incomes in the metropolitan area are much more spread out than indicated in this question.
(d) (2 pts) The chance is about 95% that the interval in (a) contains the average household income in the metropolitan area.
True. This is the correct interpretation of a confidence interval for average income.

[^0]: ${ }^{\dagger}$ The sample described in problem 2(b) is an example of a cluster sample.

